GLAUCOMA

Should Concern For Snuff-Out Phenomenon Deter Ophthalmologists From Glaucoma Surgery In Patients With Advanced Glaucoma?

Dr NN Kizor-Akaraiwe^{1,2}, Dr AA Onyiaorah³, Dr O. Chukwu^{1,2}

¹Department of Ophthalmology, Enugu State University Teaching Hospital,Parklane, Enugu. Nigeria.

²The Eye Specialists Hospital, Enugu, Nigeria.

³Department of Ophthalmology, Nnamdi Azikiwe University, Awka, Nigeria.

*Corresponding author: Dr NN Kizor-Akaraiwe E-mail:*nakaraiwe@gmail.com, +2348033189002

Introduction: Snuffout phenomenon, an irreversible unexplained loss of central vision in eyes with advanced glaucoma following filtration surgery, is a source of concern for ophthalmologists managing advanced glaucoma patients requiring filtration surgery.¹ This concern could deter the ophthalmologist from offering trabeculectomy to patients with advanced glaucoma who need surgery. Most glaucoma patients in Sub-Saharan Africa present at the advanced stage of the disease with poor medication adherencedriven by prohibitive cost.^{2,3} With advancements in glaucoma filtration surgeries, controversies have arisen as to the actual existence of this phenomenon.¹This study sought to determine the prevalence of snuffout phenomenon among glaucoma patients with advanced glaucoma who have had trabeculectomy.

Methods: This was a descriptive cross-sectional study of consenting consecutive glaucoma patients who received trabeculectomy+mitomycin C (MMC) surgery at The Eye Specialists Hospital, Enugu Nigeria between 2021 and 2023. Inclusion criteria included consenting patients with mean deviation on Humphrey visual field of -12dB or worse who had a pre-operative visual acuity better than 6/ 60. Excluded from the study were patients who

had MD better than -12dB, preoperative visual acuity of 6/60 or worseand those who withheld consent for the study. Patients who had explainable causes of loss of vision as a complication of the surgery were included in the study. They were however excluded from the definition of snuff out syndrome.

Snuffout was defined as decrease in visual acuity to counting fingers or worse, persisting till 3months post-surgery after other causes of reduction in vision had been excluded.⁴ Data was collated and analysed using SPSS version 23. Comparisons between means were done using Ttest or Analysis of Variance (ANOVA). P value <0.05 was considered statistically significant.

Results: A total of 79 eyes of 72 patientswere studied comprising of 45 (62.5%) males and 27 (37.5%) females aged 15- 84 years; mean age 61.4 ± 14.1 years. Fifty-five eyes of 50 patients underwent only trabeculectomy +MMC, 17 eyes of 15persons had combined small incision cataract surgery and trabeculectomy +MMC while 7 eyes of 7 patients had combined phacoemulsification and trabeculectomy +MMC. Fortyfour (55.7%) were right eyes while 35 (44.3%) were left eyes.Mean preoperative and postoperative mean deviation scores were -22.9± 3.7dB and -22.9 ± 6.8dB respectively.

At 3 months no eye, O(0.0%) had snuff out phenomenon (Table 1). Two (2.5%) eyes that had visual acuities of counting finger at 3 months postop had developed cataract and were excluded from the definition of snuff-out phenomenon. One (1.3%) patient who underwent phacoemulsification +Trabeculectomy had VA <3/60 at 1 month but vision had improved at 3 months. Four (5.1%) patients that underwent combined small incision cataract surgery and trabeculectomy+MMC had VA <3/60 on the first postoperative day buthad improvement in their vision at 3 months post-op. There was no statistically significant difference in mean logMAR VA across procedure groupsbefore and after Surgery; ANOVA F value =1.269, p= 0.287 (Table 2).

Preoperative VA*	Number of Patients	Frequency (%)
Normal Vision	13	16.5
Mild Visual Impairment	29	36.7
Moderate Visual Impairment	37	46.8
Severe Visual Impairment	0	0
Blindness	0	0
VA* - 1DAY PO**		
Normal Vision	6	7.6
Mild Visual Impairment	31	39.2
Moderate Visual Impairment	35	44.3
Severe Visual Impairment	0	0
Blindness	7	8.9
VA*- 1 MONTH PO**		
Normal Vision	14	17.7
Mild Visual Impairment	21	26.6
Moderate Visual Impairment	41	51.9
Severe Visual Impairment	0	0
Blindness	3	3.8
VA*- 3 MONTH PO**		
Normal Vision	15	19.0
Mild Visual Impairment	25	31.6
Moderate Visual Impairment	37	46.8
Severe Visual Impairment	0	0
Blindness	2	2.5

Table 1: Distribution of eyes by visual acuity group before and after surgery

*VA= Visual acuity (Based on WHO classification⁵); **PO= Post-Operative

Mean LogMAR VA	PROCEDURE TRAB ALONE	SICS/TRAB	PHACO/TRAB	All procedures Overall	Test statistics
Pre-Op	0.47±0.26	0.65±0.16	0.44±0.18	0.51±0.25	ANOVA F =
1 Day Post-Op	0.56±0.32	1.05±0.61	0.71±0.56	0.68±0.46	1.269
1 Month Post-Op	0.57±0.32	0.63±0.40	0.61±0.57	0.59±0.36	p = 0.287
3 Months Post-Op	0.57±0.35	0.60±0.28	0.37±0.26	0.56±0.33	

Table 2: Mean LogMAR Visual acuity before and after Surgery

Trab = Trabeculectomy +MMC.

SICS/TRAB = Small Incision Cataract Surgery/Trabeculectomy +MMC

Phaco/Trab= Phacoemulsification surgery/Trabeculectomy +MMC

Conclusion: Results of this study indicate that snuffout phenomenon is rare among our patients. This finding is encouraging, considering the high prevalence of glaucoma in our environment and the frequently late presentation of our patients with advanced glaucoma.⁶ A study in India,⁷ and others in Greece⁸ and Turkey⁹ similarly reported no case of snuffout phenomenon in their patients. A cause of significant reduction in vision identified in a few post-trabeculectomy patients in this study was development of cataract. This study suggests that concern for snuff-out phenomenon should not deter ophthalmologists from offering surgery to patients with advanced glaucoma.

REFERENCES

- 1. Desinayak N. Wipe-out following glaucoma filtration surgery: A practical consideration in glaucoma management. Odisha J Ophthalmol. 2022;29(1):1-3.
- Lawan A. Pattern of presentation and outcome of surgical management of primary open angle glaucoma in Kano, Northern Nigeria. Ann Afr Med. 2007;6(4):180-185.
- 3. Egbert PR. Glaucoma in West Africa: a neglected problem. Br J Ophthalmol. 2002;86:131-132.
- 4. Costa VP, Smith M, Spaeth GL, Gandham S, Markovitz B. Loss of visual acuity after trabeculectomy. Ophthalmology. 1993; 100(5): 599-612
- 5. World Health Organization. Change the Definition of Blindness. Available from: www.who.int/blindness/change the definition of blindness. [Date Accessed 2023 August 22]
- 6. Kizor-Akaraiwe NN, Monye HI, Okeke S. Awareness and knowledge about glaucoma and proportion of people with glaucoma in an urban outreach programme in Southeast Nigeria. BMJ Open Ophthalmol.2017;1:1-10.
- Bhadra TR, Ghosh RP, Saurabh K, Mitra A, Ghosh AK, Bhadra T. Prospective evaluation of wipe-out after glaucoma filtration surgery in eyes with split fixation. Indian J Ophthalmol. 2022; 70(10):3544-3549.
- 8. Topouzis F, Tranos P, Koskosas A, Pappas T, Anastasopoulos E, Dimitrakos

S, et al. Risk of sudden visual loss following filtration surgery in end-stage glaucoma. Am J Ophthalmol.2005;140 (4):661-6.

9. Baser EF, Seymenoglu G, Mayali H. Trabeculectomy for advanced glaucoma. Int Ophthalmol. 2011;31 (6):439–46.

Ophthalmic Simulation-based Surgery Digital Class Lab at University of Abuja Teaching Hospital (UATH): The setting-up, GLASS training and participants' feedback

David Paul Ejeba¹, Rilwan Muhammad Chiroma², Ene Oketa³, Oluwatosin Bisiriyu⁴, Adedeji Akinyemi Olawunmi⁵, Adaeze Ezenwa⁶, Fatima Kyari⁷

¹Senior Registrar, Ophthalmology Department, University of Abuja Teaching Hospital, Abuja.

²Consultant Paediatric Ophthalmologist, University of Abuja Teaching Hospital, Abuja.

³Consultant Ophthalmologist, University of Abuja Teaching Hospital, Abuja.

⁴Senior Registrar, Ophthalmology Department, University of Abuja Teaching Hospital, Abuja.

⁵Consultant Ophthalmologist/Glaucoma Specialist, Federal Medical Centre, Asaba

⁶Consultant Ophthalmologist, Guinness Eye Centre, Onitsha, Nnamdi Azikiwe University Teaching Hospital, Onitisha.

⁷Consultant Ophthalmologist, University of Abuja Teaching Hospital, Abuja.

Corresponding author: Dr David Paul Ejeba, Ophthalmology Department, University of Abuja Teaching Hospital, Abuja.

*E-mail:*davidejeba@gmail.com, +2349037858678

Introduction: Of about 250,000 ophthalmologists worldwide, there are 2,700 in Sub-Saharan Africa (SSA), a ratio of 1.8 ophthalmologists per million population^{1,2}. In addition to the low numbers, ophthalmic surgical proficiency is a challenge.

Treatable by surgery, cataract is the most common cause of blindness affecting 12.6 million of the 36-million blind people worldwide. It is the main cause of vision lossin Nigeria¹. Small-incisioncataract-surgery (SICS) is a widely accepted, appropriate, affordable procedure and delivers high-quality vision outcomes³. Similarly, for